Upstroke wing flexion and the inertial cost of bat flight.
نویسندگان
چکیده
Flying vertebrates change the shapes of their wings during the upstroke, thereby decreasing wing surface area and bringing the wings closer to the body than during downstroke. These, and other wing deformations, might reduce the inertial cost of the upstroke compared with what it would be if the wings remained fully extended. However, wing deformations themselves entail energetic costs that could exceed any inertial energy savings. Using a model that incorporates detailed three-dimensional wing kinematics, we estimated the inertial cost of flapping flight for six bat species spanning a 40-fold range of body masses. We estimate that folding and unfolding comprises roughly 44 per cent of the inertial cost, but that the total inertial cost is only approximately 65 per cent of what it would be if the wing remained extended and rigid throughout the wingbeat cycle. Folding and unfolding occurred mostly during the upstroke; hence, our model suggests inertial cost of the upstroke is not less than that of downstroke. The cost of accelerating the metacarpals and phalanges accounted for around 44 per cent of inertial costs, although those elements constitute only 12 per cent of wing weight. This highlights the energetic benefit afforded to bats by the decreased mineralization of the distal wing bones.
منابع مشابه
Hindlimb Motion during Steady Flight of the Lesser Dog-Faced Fruit Bat, Cynopterus brachyotis
In bats, the wing membrane is anchored not only to the body and forelimb, but also to the hindlimb. This attachment configuration gives bats the potential to modulate wing shape by moving the hindlimb, such as by joint movement at the hip or knee. Such movements could modulate lift, drag, or the pitching moment. In this study we address: 1) how the ankle translates through space during the wing...
متن کاملSpeed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species.
Animals respond to changes in power requirements during locomotion by modulating the intensity of recruitment of their propulsive musculature, but many questions concerning how muscle recruitment varies with speed across modes of locomotion remain unanswered. We measured normalized average burst EMG (aEMG) for pectoralis major and biceps brachii at different flight speeds in two relatively dist...
متن کاملWing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
We used a combination of high-speed 3-D kinematics and three-axis accelerometer recordings obtained from cockatiels flying in a low-turbulence wind tunnel to characterize the instantaneous accelerations and, by extension, the net aerodynamic forces produced throughout the wingbeat cycle across a broad range of flight speeds (1-13 m s(-1)). Our goals were to investigate the variation in instanta...
متن کاملDirect measurements of the kinematics and dynamics of bat flight.
Experimental measurements and analysis of the flight of bats are presented, including kinematic analysis of high-speed stereo videography of straight and turning flight, and measurements of the wake velocity field behind the bat. The kinematic data reveal that, at relatively slow flight speeds, wing motion is quite complex, including a sharp retraction of the wing during the upstroke and a broa...
متن کاملBat flight: aerodynamics, kinematics and flight morphology.
Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 279 1740 شماره
صفحات -
تاریخ انتشار 2012